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INTRODUCTION

P. Hehlls

that the science of aerodynad cs must be based on
of the atmospheric mdium through which vehicles

It is Sxiomatic
a good understanding
are to fly. It is well know tha~ vehicles travelfi at high speed
excite the air to high temperatures, with the result that air properties
deviate considerably from those of a simple gas which obeys the ideal
gas law and which has a constant specific heat. For example, figure 1
shows the major chemical reactions which are’produced in the stagnation
regions of vehicles traveling at high velocity through the atmosphere.
At about 3,000 feet per second the vibrational energg of air molecules
begins to become important. Oxygen dissociation begins at 6,OOOto.
8,OOO feet per second, nitrogen dissociation occurs at velocities in
excess of 1~,000 feet per second, and, finally, ionization of atoms

v becomes of maJor importance near escape veloci~. The dissociation and
ionization reactions are pressure dependent because each particle yields
two product particles, snd such reactions are inhibited by high pressure.
Therefore, higher tempe-ture and, consequently, higher velocity are
required to produce the reactions at sea level than at high altitudes
where much lower pressures occur. Vibrational ener~ is excited wher-
ever molecules exist at high temperature, and so the domain in which
vibrational excitation is important continues throughout the regions of
the dissociation reactions as well. It can be intuiti=ly appreciated
that these reactions will tifect many of the properties of air. Some
of these properties which will not be considered herein may have impor-
tant aerodynamic effects; for exsmple, the electrical conductivity is a
fundamental parameter in ma~etohydrodymmics. !thepresent discussion,
however, is limited to the thermodynamic and transport properties and
to the rew=+aiie= for the chemical processes which occur in air.

me th~ c properties include the energy, enthalpy, entropy,
specific heats, and the speed of sound for air; the transport properties
t6=be considered are the viscosity and thermal conductivity; and the
most hportsnt reaction rates are t~ cal processes indi-
cated in figure 1. Ih the absence of qetohydro~d c effects, these
Pammeters are
of air flow.

the furdawsntal ones that determine the characteristics

.
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THERMODYNAMIC PROPERTIES OF AIR

The equilibrium thermodynamic properties of air can be calculated
to very high temperatures with considerable confidence, since the molec-
ular and atomic ener~ levels on which these calculations are based are
known very precisely frcm spectroscopic data (refs. 1 and 2). Gilmore
(ref. 3) and later Hilsenrath and Beckett (ref. 4) have prepared accurate
tables of thermodynamic functions for air. Before discussing the fea-
tures of these functions in detail, it will be helpful to review briefly
the expressions for energy of atoms and diatomic molecules. Mechanical
analogies will be used freely in this discussion. These should not be
taken as exact descriptions of the atomic and molecular systems, of
course.

Figure 2(a) shows a ball and spring model for the diatomic molecule
which is vibrating and rotating at the ssme time that it is in transla-
tional motion. The energy of this molecule is a function of its veloc-
ity u, the rotational quantm number J, and the vibrational quantum
number n, as shown in the following equation:

mu2 h2
e(u,J,n) =~ + J(J + 1) ~ + nhv

where

m mass of molecule

h Planckfs constant

I moment of inertia

v characteristic frequency of molecular bond (the spring)

At high temperatures, the electrons may also be excited to qyantum states
above the ground state, but this contribution to total energy is gener-
ally rather small ad, therefore, is omitted herein for purposes of sim-
plification. If one averages this molecular energy over a brge number
of molecules in a sample of gas at a temperature T, the average energy
per mol is given by the following equation:

The translational motion contributes ~ RT, and the rotation contributes

an average eneru which asymptotically approaches RT. The characteris-
tic temperature Tr at which rotational.energy is bald?excited is of

—

—
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*
the order of ~ K, so that, for most practical purposes, air molecules
in the gas phase are always fully excited in rotation. On the other

. hand, the wleculsr bond is so stiff that at normal temperatures the
molecules sre essentially rigid rotators. ~wever, as tempemture
increases, the molecular collisions eventually become energetic enough
to set the bond into vibration. The vibratio&l energy is roughly half
excited at the characteristic temperature hv/k. This temperature is
rather high, being the order of 3,000° K.

The specific heat at constant densi@ is the derivative of the
average ener~ with respect to temperature. This specific heat for
diatomic molecules is shown graphically in figure 2(a). It is already
5R/2 at very low temperatures and maintains a relatively constant value
throughout the rsmge of temperatures encountered at subsonic and low
supersonic flight speeds. As vibrational energy becomes important at
higher temperatures, the specific heat approaches 7R/2.

At still higher temperatures, the molecular impacts become so
intense that the kmnd is often stretched to the breaking point. Fig-
ure 2(b) illustrates a collision between two mlecules which has just
resulted in the dissociation of one of the molecules into two atoms.
Again, if electronic energy is neglected, the energy of each atom is

. its kinetic energy plus one-half the ener~ stored in the broken bond
co/2, as shown in the following eqya,tion:

()-IU U2e(u)= ~2+~

The average ener~ for a mol of atoms at a temperature T is

~RT. The constant e. isAs before, the kinetic energy contributes

independent of temperature or velocity and contributes to the average
ener~ the heat needed to dissociate 1 mol of the molecules D. The
ratio D/R is of the order of ~,000 0 K for oxygen and 100,000° K for
nitrogen, so that the dissociation ener~ term is much larger than the
average kinetic energy at the temperatures of interest in this study
(up to about 15,000° K). T5e specific heat dE/dT of the atoms, from

3figure 2(b), is about a R. The large constant term D/2 does not

contribute to the derivative, of course.



4 NACA TN 4359

Figure 3 shows the ener~ and specific heats for molecule-atom mix-
tures in equilibrium. In the following equations:

Energy:

E=(l-x)~+xEa

.

Specific heat:

~ amd ~ are, respectively, the average ener~ per mol of molecules —

and of atoms, which has just been considered. The mol fraction of
atoms x is a function of the chemical equilibrium constant K and
pressure p, which can be calculated precise~ (ref. 3), and the mol
fraction of molecules is 1 - x. In the eqwtion for specific heat,
the first two terms on the right-hand side are the sum of the specific

—

heats for the components of the mixture, whereas the last two terms
—

give the contribution due to the change in mol fractions. The deriva-
.

tive bx/aT, which can be expressed as a function of x and the loga-
rithmic derivative of the equilibrium constant, possesses a rather sh~
mimum. The value of ax/aT is mall, but the value of Ea is so

1-

large, because of the dissociation ener~, that, where the mol fraction
derivative is a maxinmn, the last term in the specific-heat equation is

.-

overwhelmingly predominant.

The graph in figure 3 shows the specific heat for air as a function
of temperature at a pressure of 0.01 atmosphere and illustrates the
striking effect of the chemical reactions. Near 3,000° K the specific
heat has a pronounced maximum due to dissociation of oxygen, and again

—

near 5,000° K the nitrogen dissociation is ~sponsible for another peak.
The last pesk, near 10,000° K, is due to the reactions for single ioni-

.

zation of nitrogen md oxygen atoms. These..tworeactions occur together
in the same range of temperature and a stiilar set of relations is
obtained as for the dissociation reactions, except that the ionization
energy I is larger than the dissociation ener~ (1/R is of the order
of l~,OOO” K). The effect of pressure is that the maximums become larger
and nmre peaked and shift to lower temperatures as pressure decreases.

It is convenient to relate the chemical reactions in air to the
compressibility factor Z. Thi6 factor is the number of moles of gas
which arise from a mol of air originally at normal conditions or,
alternatively, it is the ratio of the molecular weight of normal air
to the mean molecular weight of the equilibrium gas, It represents the

*
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.
correction factor to the ideal gas
the compressibility factor for air
pressures of 1.0, 0.01, and 0.0001

eqwtion of state. Figure 4
as a function of tenqerature
atmosphere.

5

shows
for

The important reactions in air are also indicated in figure 4.
These are: (1) the dissociation of oxygen

o~sa

(2) the dissociation of nitrogen

~2$~

and (3) the reactions for single ionization

Ns@+e-

05j O++e-

of nitrogen and oxygen atoms

. The ionization reactions occur at very nearly the same temperature and
with nearly the same ener~ changes so that they may be classed together
as a single reaction, for purposes of approximations

.
The foregoing reactions are the ones which largely determine the

equilibrium concentration of the major components of air, and these com-

-~ic pro~rties ● At high pres-ponents, in turn, establish the th”
sures, nitric oxide NO becomes a sizable dnor component of air but the
thermodynamic properties of NO are about the average of those for N2

and 02, and, since the nitric oxide formation does not change the balance
between molecules amd atoms, it does not greatly influence the thermo-
-iC functions of air.

The compressibiliiqyis not influenced by vibrational excitation
and, therefore, is equal to 1.0 until oxygen dissociation begins. Since
air contains about 20 percent oxygen, the compressibility approaches 1.2
when o~gen dissociation is complete. It increases further to a value
of 2.0 when nitrogen dissociation finishes the conversion of molecules
into atoms. Single ionization of the atoms doubles the number of gas
particles again, so that the compressibility approaches 4.0 when these
reactions are complete.

The effects of the chemical reacticms are most intense where the
slope of the compressibility is a maximum. The most interesting feature
of these functions is that the slope of Z is nearly zero at the transi-

* tion from one mjor reaction to another (fig. 4). This shows that one
reaction is essentially complete before the next reaction starts, and in
reference 5, for exsmpl.e,complete tiependence between the reactions is

.
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assumed in order to derive analytic solutions for the properties of high-
.

temperature air. It is found that these analytic solutions are genera12y
within 2 percent of the precise answers obtained by iteration (ref. 4).
The most time-consurdng portion of such calc&%tions is finding the com-

.

pressibility factor (or its equivalent, the cgmponent mol fractions). “-
If less accuracy is sufficient, of the order of 10 percent, the compres-
sibility function can be fitted empirically with hyperbolic tangents.
The approximate formlas for compressibility,energy, enthal~, and the
specific heats are as follaws:

--’’0*4~h(*-’)+’~(*-5’) ‘1)()z=2“5+ ‘*1 ‘* ;0

where the reduced temperature is

e ( )=T1-&og~

the reference pressure _po is 1 atiospherej end log signifies the
logarithm to the base 10. The dimensionless energy is

For case I, oxygen dissociation only (1.O<Z<l.2):

(2)

For case II, nitrogen dissociation only (1.2< Z< 2.0):

For case 111, ionization reactions only, up to about 10 percent ioniza-
tion (2.0 <Z <2.2):

(2 ~)+,z-2,(,+*)~= (4-z) 2+5100’0 (3C)

.

*

The enthalpy H is easily found from the relation

ZH—= g+z
RT

(4)
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. For cases I and XI, the entropy S is approximately

7

given by

.

r(Z;+lO*PO )L

{

=(2- Z)@o&T+l) -lOge~-eQ(-*] +

3000

( )

e=3”oo ~-1

1

2-z—-
T T

-lo~y+

2(Z -
[

U @oq T+ 1) + 2.3 2(Z

1

- 1)- lo% —
z

and for case III,

(%)

( )Z5+10*L =
R Po

5z(lo~ T+l) +4.6
T

(
-(z- 2)210*~+

14.2
)
- (4 - Z)1O* + (m)

In view of the order of the approximation, an average vibrational fre-
W quency has been assumed for both ~gen and nitrogen and in the energy

functions the particles are treated as though sJJ.are in the ground state
of electronic excitation. Note that the displacement of the compressi-
bility function varies as the logarithm of pressure and that the thermo-
dynamic properties are all givenas functions of compressibility and
temperature. ‘Theelectronic excitation has been accounted for in the
entropy functions by adding constant values equal to the average of the
logarithm of the electronic partition function over the temperature range
of interest.

For the specific heat, the derivative of compressibilitywith tem-
perature is required. It is given by

(%)P=-++%=Je&2(*-7,‘2sech2Q=7)+

If the correction for taking the parti~
pressure is disregarded, the specific heat at

(6)

derivative at constant
constant densi~ becomes

For case I:
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For case II:

For case III:

( )]J2QL 2 + 3(Z - 1) + ; + l13,m)g (7b)
Sm l= (

T

The specific heat at constant pressure

)167’m%

is

and to the order of these approximations the

(+)

Zc

a2P—S&y.
P

n
Zqr
T

(7C)

(8) ●

*
speed of sound is given by

(9)

The dimensionless energy is shown in figure 5 as a fumction of tem-
perature for pressures of 0.0001, 0.01, and 1.0 atamsphere. The results
given by the approximate formulas compare favorably with nmre precise
calculations (refs. 4 and 5). The greatest errors occur in the region
of the ionization reactions, where a simple empirical form for the com-
pressibility function does not seem entirely adequate. Similarly, the .
dimensionless entrow is shown in figure 6, and again the approximate
formulas compare favorably with the precise calculations until ionization
temperatures are reached.

As expected, the accuracy of the approximate formulas for the
specific heats is not as good as for ener~, since derivatives of com-
pressibility are involved. Still, the ratio of the specific heats is
not greatly different from more precise calculations of the speed-of-
sound parameter

1.
a2p/P} as shown in figure 7. The largest deviations

occur at the transitions between one reaction end the next, where the
speed-of-soundparameter is a maximum. v.
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The foregoing thermodynamic properties of air enable one to solve a
number of important aermiynamic problems. Where it is desired to use
analytic expressions in a computing program, the results of reference 5
may be used, or if computer storage is a problem, the anslytic expres-
sions given by equations (1) through (9) represent a cmnpromise involv-
ing some sacrifice in accuracy. However, for many problems it is stiXL
convenient to use graphical methods of solution. The particular graphi-
csl functions which are the most convenient to use depend on the problem
to be solved. For exsmple, it is expedient to use temperature as the
independent variable, as in figures 4 through 7, for processes in which
temperature is constant. This must be done in the initial calculations
~Y~ since the Pa~ition ~ctions are kctio~ of temperature only.
On the other hand, a Mol.lierty_pediagram in which enthal~ is plotted
as a function of entropy is useful for solutions of isentropic flow

m

pr ‘ . A very complete Moll.ierdiagram is presentedby Feldman
6). For solutions of nonisentropic flow processes such as occur~n s“

waves, it has been found convenient to use a graph of the
sionless parameter (p/hp) as a function of dimensionless enthal~

(h/ho),where ~ is the enthalpy at standazd conditions.

The properties of air which have been heated by shock waves are
particularly important at the present time, because the shock tube is

. being used extensively as an instrument for aemdynami c testing. Romig
(ref. 7) has-outlined a method of solving for tempera$

H
Ed

nsity, and
pressure folLowing a normal shock wave, and Felmi< f“.6 presents a

. rather complete set of such-solutions including the k- o of oblique
shocks and of shock reflections. Hochstim (ref. 8) has worked out a
number of solutions for a variety of initial conditions. Perhaps one of
the more usable forms in which such solutions can be presented is to
graph, as a function of shock-wave Mach number, &, the ratio of the
real gas property to the value of the ssme property which would occur
for an ideal gas having a constant 7 of 1.4. The shock-ave Mach nuw
ber is defined as the speed of the shockwave divided by the speed of
sound in the undisturbed air. Figure”&8(a), 8(b], and 8(c) show,
respectively, graphs fdi the pressure, density, and temperature which
occur following a nomal shock wave traveling through air initislly at
293° K. Subscript 1 refers to the initisl conditions and subscript 2
to the conditions following the normal shock wave. The superscript *
denotes the ideal gas condition. The solutions are shown for initisl
pressures of 1, 0.1, 0.01, 0.002, and 0.0001 atmosphere. Subscript 3
w~ refer to the conditions following the normal reflection of the shock
wave from the closed end of the shock tube, and the ratio of the real.to
ideal values for pressure, density, and te~rature after the reflection
are shown, res~ctively, in figures 9(a), 9(b), and 9(c). Figure 10
shows the ratio of the speed of the reflected shock wave, Ur, to the
speed of a shock reflected in the ideal gas, Ur*. The shock-wave M@ch
number is used as the independent variable in figures 8, 9, and 10
because the velocity is the easiest property of the shock to measure
precisely. Also, the Mach number is u~mther than the velocity,
because in this form it is convenient to use the solutions over a small
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range of initisll.tem~ratures. While it is smewhat inconvenient to have
.

the properties referenced to their ideal gas values, rather then plotted
directly, this is more than compensated for by the fact that the gas
properties can be picked off the graphs quite accurately. Note that the

.

displacements of the curves are about proportional to the logarithm of the
initial pressure, p=, so it is ~ssible to interpolate between the curves
with reasonable accuracy also.

Obviously, not all aerodynamic problems can be solved with only the
themodynsdc properties of air. Therefore we shsXL turn attention now
to the equally tiportant transport properties.

TRANSPORT PROPERTIES OF AIR

The transpart properties of gases can all be related to the effec-
tive size of gas particles during collisions (refs. 9 and lO). The
smaller the size, the larger is the mean free path between collisions;
then the transpart occurs between re@ons of the gas having greater
differences in momentum and energy. Consequently, the coefficients of
viscosity and thermal conductivity vary inversely with the size of the
gas particles. Figure Id.shows qualitatively the form of the potential
functions between the particles from which the collision diameters are
determined. Consider first the potential between inert mdecul.es. At
long range, the potential has a very shallow minimum which at normal or
higher temperature is very small compared with the kinetic energy of
the colliding molecules. This is the portion of the potential associ-
ated with the weak Van der Waals forces of attraction. At shorter range,
the potential rapidly approaches very large positive values and the
interparticle forces are strongly repulsive. The path of one ~lec~e
with respect to mother during collision is shown for two typical cases
by the black balls which roll into the potential well, penetrate the
positive colunn, and are deflected back into potential-free space. The
depth of the penetration increases with increasing kinetic energy of the
relative motion between molecules.

.

.

l%e effective collision dismeter a is roughly the diameter of the
molecular volume which is not penetrated ~ the collisions and, on the
average, it is approxbmtely the dismeter where the molecular potential
equals +kT. The collision cross section is by definition fia2. From
the shape of the potential, it can be seen that the collision diameter
depends on the ener~ of the collisions and is, therefore, a function
of temperature. At high temperatures, however, the extremely steep por-
tion of the potential is penetrated and-the collision cross section is
relatiwly constmt, independent of temperature. Then the molecules
behave essentially as hard elastic spheres, for which the coefficient
of viscosity varies as the one-half power of the temperature. The

—
J

Sutherland correction to the coefficient of viscosity accounts reasonably
welJ.for the effective increase in ccdlision diameter at low txmrperatures.

.
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.
Where nmre precise estimates are reqtired, the methods developed by
lHrschf’elderand others (ref. 9) sre very useful for calculating the
transport properties of inert gases.

The transport properties of air at high te~ratures are in doubt
mainly because of uncertainty about the cross sections for atom-atom
and atom-molecule collisioti. Two atoms, for exanple, may a~roach one
another along my one of a mmber of different potentials depending upon
how the electron spin vectors add up. I13xismiltiplici~ of potentials
is indicated by the dashed lines on the atom-atom potentisl disgrsm of
figure U_. The only one of these potentials which is knuwn qutitatively
at present is the lowest lying potential associated with the lowest total
electron spin. This is the potential responsible for the vibrational
energy levels obseti in the stable diatomic molecule. The distinctim
feature of this potential is its negative well which is very deep com-
pared with the kinetic energy of coUisions at the temperatures of
interest herein. ~ fact, the depth of this well is just the dissocia-
tion energy of the diatomic molecules. As pointed out previously this
energy corresponds to temperatures of about n,~ K for oxygen and of
about l~,OOO” K for nitrogen. Consider the co12.i6ionsi~ustrated by
the paths of the three black balls rolJing into this potential well.
(fig.IL). The atom, which has a kinetic energy rmchlsrger thau the

. absolute value of the potential field through which it traverses, will

not be greatly deflected. Now it is the absolute value of the deflec-
tion produced by a collision which influences the flux of mass, momentum,

. or energy through the gas; hence, for practical purposes this collision,
which produced only a sma~ deflection, ~ be considered a miss. On the
other hind, an atom which penetrates the volume where the potential
change is about equal to its kinetic energy will suffer a considerable
deflection, snd such a collision wilL count. It is not essentisl that
the repulsive, positive prtion of the potential be penetrated, as in
the third collision shown on the right in figure 11. In the subsequent
estimates of the transport properties, it will.be ass-d that the effec-
tive diameter for atom-atom collisions is where the lowest lying poten-
tial equals -kT and that the diameter for atom-molectie collisions is
the arithmetic average of the atom-atom snd the molecule-molecule diam-
eters. This latter assumption corresponds to the concept that the col-
lision diemeter is a measure of the effective range of the electron dis-
tribution about the nucleus and that a collision occurs whenever these
electron distributions overlap. M the case of collisions between ions
or between electrons, the well-known coulonibpotential +e2/r msy be
used h a similar way. For collisions between a neutral and a charged
particle, the potential.for the interaction between the charge and the
induced dipole is used.

The coefficient of viscosity, which is based on the preceding
assumption (ref. 5), is shown in figure 12 as a function of temperature
for three pressures: 1.0, 0.01, and O.CQO1 atmosphere. The ordinate
is the ratio of the viscosity coefficient to the vslue given by a
Sutherland type fomula
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v~ = ()1.46X 1O-WJ2 1+* ‘1 (lo)

(in Units of g/cm-see). The ratio is unity until dissociation of mole-
cules becomes appreciable; then the mean free path between molecular
collisions becomes larger because the collision diameters for the atoms
are smaller than for the molecules, the momentum exchange takes place
between more widely separated planes in the gas, and the viscosity
increases. On the other hand, the collision diameters become very large
in an ionized gas, and then the reverse effect causes the viscosity to
drop to very low values. Again, because of the regularity of the func-
tions, it is possible to establish an empirical formula which approxi-
mates the temperature and pressure effect on viscosi@. Such a formula

(D)
.

.

(log signifies the logarithm to the base 10). The comparison between
equation (il.)and the viscosity function is shown In figure 12.

The coefficient of thermal conductivity is shown as a function of
temperature for pressures ofl.O and 0.01 atmosphere in figure 13. Again,
the coefficient is referenced to a coefficient of the Sutherland form:

k. =
()

4.76 X 10-6E&/2 l+% ‘1 (12)

(in units of cal/cm-sec-%). The calculation of these coefficients is
based on the method outlined by EirschXelder (ref. 11) and developed fur- ‘
ther by Butler and Brokaw (ref. 12). In this method, the ener~ transfer
through the gas is treated in two independent parts. One part is the
energy transferred by collisions as in ordinary thermal conductivity of
nonreacting gases. The other part is the energy transferred by diffusion
of the gas particles and the reactions which.occur to ==~ablish chemic-
al equilibrium. This latter part predominates wherever the compressi-
bility derivative with respect to temperature becomes a maximum. The
effect is very much like the effect on the specific heats. In fact, the
thermal conductivity ratio k/~ is nearly proportional to the specific

.

heat just as for inert gases, so that a reasonably good approximation is
.
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(lsa)

‘~vity smd the approximate spe-The comparison between the the
cific heat given by equation (8) is indicated in figure 13. Note that
the symbol k is conventionally used for both Boltzmann~s constant and
thermal conductivity. Wherever ET appears, k signifies Boltzmann‘s
constant.

The relation given by eqyation (13a) is good only for the
tion reactions. Where ionization occurs, the thermal conducti
greatly increased b&m’use or the high thermal velocity of the lightweight
ete’e~ Then the thermal conductivity is approximately given up to
about 10 percent ionization by

(&“31+F )-1 log -2 Cp

Po 3.5R
(13b)

It is desirable to check the foregoing theoretical calculations and
approximations with e~eriment. One of the mre strikQl&@fe.&&_pre -
dieted by the theo is the pronounced effect on thermal conductivi~ of

+–” -
--

gases%m-wh ch chemical reactions occur=” been observed
experfin%a~indi ssocia-41V coffins ‘at the Lewis
Flight Propulsion Laboratory (ref. 13). As figure 14 shows, their
experiments me in very good agree~nt with the theoretical prediction
for the equilibrium gas. The results strongly suggest that the basic
relations established by Hirschfelder (ref. IL) are essentially correct.
Unfortunately, the thermal dissociation of air cannot be studied at such
tractable temperatures as in the case of N204. However, high-te~erature

air can be produced in the shock tube for short intervals, and figure 15
shows the correlation between measured and theoretical thermal conduc-
tivity in air, which has been obtained at the Ames Aeronautical Laboratory.
In these experiments, strong shock waves are reflected from the closed
end of a shock tube, and a temperature is measured at the interface
between the hot station= air and a quartz glass plug. The temperature
is deduced by measuring the change in resistance of a thin film of nickel

. evaporated onto the glass. If it is assumed that the air is in equilib-
rium and has a constant thermsl diffusivity k/cpp, the interface tem-
perature rises instantaneously to a constant value which is related to
the diffusivity of air and of the glass plug (ref. 14). AS wti be

pointed out later, the dissociation of air may be rapid enough to jus-
tify the assu@= of in tsxltaneous equilibrium. Thermal diffusivi~
will not be constszlt%3% e air, of course, tnit“at least the strong
variations in heat capaci~ and thermal conductivity will cancel each
other. In any event, when the experimental data sre correlated in this
manner, they compare reasonably well with the theoretical predictions.
No consistent data exist yet in the really titeresting region where a
mximum in the coefficient is predicted because of oxygen dissociation.



14

some
tion

NACA TN 4359

To i~ustrate the manner in which the transport properties enter
*

aerodynamic calculations, consider the heat transfer to the stagna-
region of a blunt, high-sped vehicle with a cool wall. According .

to reference 15, an approximate expression for this heat transfer is — —

73s=(%-‘Y4(W2J’”“ (14)

where q is ‘theheat flux per unit area at the stagnation point, r is
the radius of curvature of the vehicle at this mint, and Re is the
Reynolds nuuiberbased on the length r and free-stream conditions. These
free-stream conditions are designated by the subscript 1 and, as before,
the subscript 2 refers to conditions following the shock wave. At moder-
ate sltitudes, below 150,000 feet for exs.mple,the air in the stagnation
region is essentially everywhere in equilibrium, as wiXL be pointed out
later. Thus the equilibrium thermodynamic properties of air may be used
to evaluate the density p2 snd the temperatu= T2. The viscosity l.lz
and the thermal conductivity k for air in equilibrium are functions of
temperature uniquely detemined by the pressure pa, and they are given
approximately by equations (n) and (13a), respectively. Thus the evalua-
tion of the heat-transfer parameter, given by equation (14), is relatively
straightforwardand this parameter is given as a function of velocity in
figure 16. The effect of the chsmges in ambiqnt conditions with altitude

. —.

is rather small and has not been shown. Figure 16 slso shows that there- ‘“ - “
is satisfactory agreement between the theoretical solution and the experi-
mental results reported by Rose and Ridden (ref. 16). This solution also -
agrees with the fairly rigorous deductions of ~ta~ation-point heat trans-
fer developedby Fw and Ridden (ref. 17). The approximate expression
(eq. (14)) is useful here because the role of the transport properties is
easy to visualize in view of the simple fomn of the functional relatf.on- .
ships involved. , —

When one considers the flow processes which occur in high-speed
flight at very high altitudes, or in regions of highly expanded flow,
the equilibrium thermodynamic and transport properties w not be suf-

.

ficient to determine the flow uniquely. At the very low densities which
occur in these cases, the time required for the a~roach to equilibrium
may be comparable to the time needed for a s~le of air to pass through
a disturbed region of the flow field. Then the chemicsl reaction rates
become another set of independent parameters on which the flow depends.
These are discussed in the following section.

CHEMICAL REACTION RATES

Before discussing the finite reactta rates, simple flows are com-
pared for the two limiting cases: (1) The reaction is frozen and (2)
the reaction is in equilibrium.

P

.
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*
The effects of chemical reactions on the equilibrium conditions

following a nomsl shock may be seen from figure 8. In order to compare
three of the state variables simultaneously, the density, pressure, and.
temperature effects are shown together in figure 17 for flight at 160,000
feet altitude. If the reactions were iqf~it~ly slow, air would behave
as an ideal gas. This condition is desi~ated as frozen flow, and it
corresponds to the reference value of unity in figure 17. However, the
reaction rates are finite and, as the flow approaches equilibrium, the

is grealLy re~ced becau%e thermsl ener is soaked up in
exciting vibrations and in break e pressure is not
gi~ infl”uenced by the reactfis-~-=d th~—bp in temperature is
compensated by a large incre=e in density.—”-”

.— ... ..

Reference 18 gives an analysis for flow that maintains chemical
equilibrium while exp,nting ~round a c&ner, and a numerical example is
given in figure 18 for air-which is initisJLy at 6,14-0°K and 1.2 atmos-
pheres. The effect of the reaction in this case is to increase the tem-
perature over the nonreacting value because the recombining gas now gives
up the ener~ that is contained in dissociation and vibration. Thus the
gas cools much more slowly during the expansion than a nonreacting gas.
From figure 18 it is seen that, during the Prandt.1-Meyerexpansion, it is
the density which is relatively little affectedly the reactions and that

. it is the pressure which adjusts with the temperature change this time.
This is in marked constrast to the effects of reactions on the shock
compression.

.

Now th? reaction rates depend on the number of nmlecular collisions
per unit time, and these collisions are more frequent the higher the
density and the higher the temperature. At the high densities which
occur in low altitude flight, the rates are very mpid and air flows
are essentially in complete equilibrium. On the other hand, at very
high altitudes where densities are very low, the reaction rates are so
slow that flow may be essentially frozen. At intermediate altitudes,
it is necessary to consider the reaction rate, from which can be derived
the characteristic time in which the gas decqys to chemical equilibrium.
In a flowing gas, the quantity of interest is a characteristic length
obtained by multiplying the t- by the flow speed. This characteristic
length is used for example h calculations of one-dimensional.flows in
references 19 and 20.

Figure 19 shows the lengths required to reach vibrational equilib-
rium h the flow downstream of a normal shock wave at various altitudes
and velocities. Relsxaticn effects are hnportant where this length com-
pares in magnitude with a length such as the shock-detachment distance.
At low velocities, where low temperatures occur, the reactions have a
trivial effect, as inaicated by the shaded portfon of the figure. It
is seen that, for a wide range of speeds and altitud~s, the vib~tions

. may be regarded as being in equililj@nn. At altitudes below 1~,000 feet,
the fihite length geceralJy needs to be considered only for vehicles
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moving slower than 10,000 feet per second. At 240,000 feet, the vibra-
tional relaxation wUJ. be important at the sta~ation region for vehicles
traveling less than 25,000 feet per second. The calculations for these
curves are based on Blachanrs experimental values for vibrational relaxa-
tion (ref. 21). These agree fairly well with the theory of Schwartz and
Herzfeld (ref. 22) and the calculations are probably correct within a
factor of 5, at lea6t. In contrast, the existing knowledge of dissocia-
tion rates is extremely uncertain. The theoretical calculations require
some severe mathematics approxmat ions (ref.-23),and experiments have
been made only recently which~ ti+m rates within several ox%ers
of magnitude (refs. 24, 25, and 26). Despitethe value of these recent
data, the state of kn~le~e is still far from satisfactory, as is illus-
trated in figure 20.

..-
This figure shows the three-body recombination

rate as a function of temperature for the recombination of oxygen and
nitrogen atoms and for the recombination of atoms in air. The third body
M in the col.li6ionserves to carry away the excess energy released by
the recombination so that the newly formed molecule can be stable. The
fact that the results do not agree more closely is only partly due to
experimental uncertainties, since there also exists some question of how
to translate the observed relaxation times into reaction rates. In view
of these uncertainties, the theory developed by Wigner (ref. 23) has been
used to celculate the characteristic reaction I&g@,hs in dissociating
flow. In applying this theory it & been assumed that the third body in
the recombination reaction is a hard elastic sphere and that the potential.
between atoms is the same one used earlier to evaluate the transport
properties. The same expression is used for the recombination rate of
both the o~gen and nitrogen atoms.

Figure 21 shows the results for the flm? lengths required to reach
oxygen dissociation-equilibriumdownstream of a normal shock. The same
functional relations occur as for vibrations; that”is, relaxation becomes
increasingly important at.higher altitudes and lower velocities. For
nitrogen dissociation, all curves in figure i6 would be shifted to the
left so that the curve for a velocity of 10,COO feet per second for
nitrogen roughly coincides with the curve for a velocity of 15,000 feet
per second for oxygen; it would fall.in the “reaction negligible” region.
(See fig. 1.) Similarly, the curve of 15,000 feet per second for nitro-
gen shifts roughly to the curve of 20,000 feet per second for oxygen.

Above an alitutde of 250,000 feet, the typical vehicle enters slip
flow and, as the altitude increases further, the shockwave eventually
disappears; Under these Condition, molecular impact on surfaces is a
more importsmt phenomenon than those associated with the continuum air-
flow properties. Thus, in any case, the relaxation effects need to be
considered only over a finite range of velocity and altitude.

.
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CONCLUDING REMARKS

It has been found that a fairly satisfactory state of scientific
knowledge exists with respect to the equilibrium thermodynamic properties
of air, that the knowledge of the transport properties leaves something
to be desired, and that the state of theory and e~eriment on chemical
reaction rates is quite inadequate. For example, equilibrium themo-
dynsmic properties can be calculated very precisely by iteration methods,
to the order of 1/2 percent or better; closed-form anal@ic solutions for
these properties are accurate to the order of 2 to 5 percent; and approxi-
mate semiempirical formulas are available for rough engineering estimates
which are good to the order of 10 to 20 percent. For transport properties,
good theoretical methods for calculating collision cross sections are not
yet available; the approximations used have an uncertain@ of the order
of 50 percent, but the order of magnitude and the functional relationships
which have been estimated for these properties are probably correct.
Vibrational relaxation rates are approximately kmown, but the dissocia-
tion rates are still uncertain by several orders of magnitude. However,
much effort is being focused on these problems, and it is reasonable to
anticipate that adequate solutions for aerodynamic purposes will soon be
forthcoming.

.
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ENTROPY OF AIR IN EQUILIBRIUM
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EQUILIBRIUM PRESSURE FOR NORMAL SHOCK
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EQUILIBRIUM DENSITY FOR REFLECTED SHOCK
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EQUILIBRIUM VELOCITY FOR REFLECTED SHOCK
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CHEMICAL RECOMBINATION RATES
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